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Abstract

There is an increasing demand for assessment of water provisioning ecosystem
services. While simple models with low data and expertise requirements are attractive,
their use as decision-aid tools should be supported by uncertainty characterization.
We assessed the performance of the InVEST annual water yield model, a popular5

tool for ecosystem service assessment based on the Budyko framework. Our study
involved the comparison of ten subcatchments in the Cape Fear watershed, NC,
ranging in size and land use configuration. We analyzed the model sensitivity to
the eco-hydrological parameters and the effect of extrapolating a lumped theory to
a fully distributed model. Comparison of the model predictions with observations and10

with a lumped water balance model confirmed that the model is able to represent
differences in land uses. Our results also emphasize the effect of climate input
errors, especially annual precipitation, and errors in the eco-hydrological parameter
Z , which are both comparable to the model structure uncertainties. In practice, our
case study supports the use of the model for predicting land use change effect on15

water provisioning, although its use for identifying areas of high water yield will be
influenced by precipitation errors. While the results are inherently local, analysis of
the model structure suggests that many insights from this study will hold globally.
Further work toward characterization of uncertainties in such simple models will help
identify the regions and decision contexts where the model predictions may be used20

with confidence.

1 Introduction

The interactions between hydrology and land-use and land-management decisions
have received increased attention in recent years. The International Association of
Hydrological Sciences (IAHS) recently declared this decade Panta Rhei – everything25

flows – to focus on the changing dynamics of the water cycle in connection with
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changing human systems (Montanari et al., 2013). Socio-hydrology has recently been
proposed as a “use-inspired” discipline to focus on understanding the human-modified
water cycle (Sivapalan et al., 2014). The quantification of water services, or the value
that humans derive from natural processes, is also increasingly seen a means of
elucidating the interactions between people and water. Examples of this approach5

abound globally: through its Grain-to-Green program, China incentivizes land-owners
to convert annual crops to perennial species or natural forests (Liu et al., 2008). In
South America, there now exist dozens of Water Funds, which invest in upstream
conservation measures to ensure the downstream provision of clean water (Martin-
Ortega et al., 2013). In the United States, federal investments in water resources10

projects now require an assessment of impacts to ecosystem services (Council on
Environmental Quality, 2013).

To quantify the impact of land-use and land-management decisions on ecosystem
services, a number of tools have been developed by researchers and practitioners
(Bagstad et al., 2013). Typical applications of these tools (i) occur in data-scarce15

environments, (ii) require spatially-explicit information, at the scale of individual land
holdings and parcels, and (iii) focus on the estimation of a range of ecosystem services
rather than the precise quantification of a particular service. Accordingly, models for
ecosystem-service valuation often focus on using globally available data, accepting
spatially explicit input and producing spatially explicit output, and limiting the model20

structure to key biophysical processes involved in land-use change (Guswa et al.,
2014).

The InVEST annual water yield model was developed in line with this philosophy
(Tallis et al., 2013). It includes a biophysical component, computing the provision
of freshwater, or water yield, by different parts of the landscape, and a valuation25

component, representing the benefits of water provisioning to people. The biophysical
module, the focus of this paper, is based on the Budyko theory, which has a long
history and continues to receive interest in the hydrological literature (Budyko, 1979;
Zhou et al., 2012; Zhang et al., 2004, 2001; Donohue et al., 2012; Xu et al., 2013;
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Wang and Tang, 2014). The InVEST model applies a one-parameter formulation of
the theory (Zhang et al., 2004) in a semi-distributed way. This raises two issues.
First, application of the model to ungauged basins or to future land-use scenarios
requires a methodology for determining the value of the model parameter from known
characteristics of the climate and basin, since it cannot be determined via calibration.5

Second, the application of the water balance at the scale of individual patches of
land, rather than the catchment scale for which the Budyko theory was developed,
is uncommon in the literature. The effect of this change in spatial scale is unclear, and
calls for a rigorous analysis of the model uncertainties and their impact on ecosystem
services assessments.10

Uncertainty analyses remain rare or incomplete in ecosystem services assessments,
where the focus is on analyzing trade-offs and valuation of multiple services, often
at the expense of characterizing uncertainty of individual modeling components. For
example, in reviewing the literature using the InVEST annual water yield model,
we found the following common limitations: absence of or inadequate comparison15

with observed data, calibration of the model without prior identification of sensitive
parameters, and lack of validation of the predictive capabilities in the context of land-
use and land-cover (LULC) change (Bai et al., 2012; Nelson et al., 2010; Su and
Fu, 2013; Terrado et al., 2014). To varying degrees, these limitations jeopardize the
production of credible assessments of ecosystem services.20

Recent work paved the way for understanding the uncertainties in the InVEST model
predictions. Sánchez-Canales et al. (2012) analyzed the sensitivity of the model in
their case study of the Llobregat catchment, in Spain. Similarly, Boithias et al. (2014)
and Terrado et al. (2014) reflect on the sensitivity of the model to climate inputs, and
calibrate the model based on the climate parameters and return flows. However, their25

conclusions are often context-specific and lack a quantitative estimate of the model
structural uncertainties.

This paper aims to extend this work by characterizing the uncertainty in the InVEST
annual water-yield model applied to watersheds in the Cape Fear region of North
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Carolina. This study quantifies the effect of parameter uncertainty on model outputs
through sensitivity analyses; compares the distributed application of the water balance
to the catchment-scale application; and quantifies the accuracy of calibrated and
uncalibrated versions of the model by comparing model predictions to observations.
From a practical standpoint, this work helps InVEST model users identify modeling5

uncertainties and proposes simple and replicable methods that can be used to quantify
their effect on water services.

2 Methods

Errors in hydrologic model predictions can be separated into three sources: the
structural error associated with model formulation and scale, error in parameter10

selection, and error in the model inputs. To assess these three sources, we applied
the InVEST annual model to ten subcatchments in the Cape Fear basin, NC. Their
co-location implies a similarity in climate and seasonality and facilitates a focus on
variations in land-use, size and topography (Hrachowitz et al., 2013). The following
sections provide the description of the model and case study, the methods for the15

sensitivity analyses, the assessment of input data errors, and the evaluation of model
performance.

2.1 InVEST annual water yield model

2.1.1 Background theory

The Budyko curve is a unique empirical function that relates the ratio of actual to20

potential evapotranspiration (averaged over a catchment and over many years) to the
ratio of precipitation to potential evapotranspiration (Budyko, 1979). The function is
bounded by two limits – an energy limit in which actual evapotranspiration is equal to
potential, and a water limit for which actual evapotranspiration is equal to precipitation.
Due to spatial and temporal variability in climate forcing, the asynchronicity of water25
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supply (P ) and demand (PET), the imperfect capacity of the root zone to buffer that
asynchronicity, and lateral redistribution of water within the catchment, the Budyko
curve lies below those two limits (Fig. 1).

To describe the degree to which long-term catchment water-balances deviate from
the theoretical limits, a number of scholars have proposed one-parameter functions5

that can replicate the Budyko curve (e.g., Fu, 1981; Choudhury, 1999; Zhang et al.,
2004; Wang and Tang, 2014). The InVEST water yield model employs the formulation
by Zhang et al. (2004), which incorporates a parameter, ω:

AET
P

= 1+
PET
P

−
[

1+
(

PET
P

)ω]1/ω

. (1)

AET is the actual evapotranspiration (mm), P is precipitation (mm), PET is the potential10

evapotranspiration (mm). Larger values of ω indicate those basins that are more
“efficient” in converting precipitation to transpiration, e.g., those with precipitation
synchronous with PET and/or with deeper root zones. Gentine et al. (2011) and Troch
et al. (2013) have shown that the natural co-evolution of vegetation, climate, and
topography may lead to basins for which the effects implicitly captured by ω counter-15

balance each other, offering an explanation for the observed convergence of data along
the Budyko curve. The intent of the InVEST model, however, is to predict the effects of
human-induced changes, i.e., to examine catchments for which natural co-evolution is
disrupted.

2.1.2 Spatially-explicit application to land-use change20

Model overview

To represent parcel-level changes to the landscape, InVEST represents explicitly the
spatial variability in precipitation and PET, soil depth, and vegetation. The model is
GIS-based, using rasters of climate and soil properties as inputs (see Tallis et al., 2013
for full details).25
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For vegetated land uses, InVEST applies the Zhang formulation in a spatially explicit
way at the pixel scale (10 to 100 m on a side):

AETi

Pi
= 1+

PETi

Pi
−
[

1+
(

PETi

Pi

)ωi
]1/ωi

. (2)

In contrast to Eq. (1), P , PET, w, and AET are all functions of the local position,
indicated by the subscript i .5

The parameter ω is further deconstructed to separate the effects of soil depth, rainfall
frequency, and other factors, following an approach proposed by Donohue et al. (2012):

ωi = Z
AWCi

Pi
+1.25, (3)

where AWCi is the plant-available water content (depth), and Z is an empirical10

parameter. The constant, 1.25, in Eq. (2) reflects the minimum value of ω
corresponding to bare soil, following Donohue et al. (2012). In this representation,
differences in land-use and land-cover affect both PET, through changes to the crop
coefficient, Kc, and Z , through changes to the root depth and plant-available water
content.15

For open water, wetlands, and urban land-uses, InVEST computes AETi directly
as a user-defined proportion of PETi , with classical approaches such as the FAO 56
guidelines (Allen et al., 1998) or local knowledge used to determine the appropriate
proportion (Tallis et al., 2014). The simple representation of these LULCs, compared to
the vegetated land uses modeled with Eqs. (2) and (3), reflects the focus of the model20

on vegetation-dominated landscapes.
Total evapotranspiration from a catchment is computed as the sum of AETi attributed

to each cell, and water yield is obtained by subtracting this value from the total
precipitation.
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Selection of the Z parameter

The empirical constant Z captures catchment-wide characteristics of climate
seasonality, rainfall intensity, and topography that are not described by the plant-
available water content (AWC) and annual precipitation P . Given the empirical nature
of the model, the value of the Z parameter remains uncertain. In this work, we examine5

the three methods for the determination of Z that are proposed in the InVEST user’s
guide (Tallis et al., 2014). The first draws upon recent work that suggests that Z
is positively correlated with the average annual number of rain events per year, N,
and that Z may be approximated by N/5 (Donohue et al., 2012). This implies that
Z captures rainfall patterns, distinguishing between catchments with similar annual10

precipitation but different intensity. The second method relies on globally available
estimates of ω (e.g. Liang and Liu, 2014; Xu et al., 2013). Z is inferred from these
published values of ω by inverting Eq. (2) with values of AWC and P averaged over the
catchment. In the third method, Z is determined via calibration to streamflow data (see
Sect. 2.5).15

2.2 Cape Fear study area

The Cape Fear catchment is a 23 600 km2 area in North Carolina. Its major land uses
are forest (40 %), wetland (15 %), grassland (14 %), and agriculture (12 %), mainly
in the lower parts of the watershed and including intensive swine and poultry farms.
Urban and agricultural development has generated significant groundwater extraction20

throughout the catchment.
The climate is humid subtropical, with a precipitation average of ∼ 1200 mm over

the 2002–2012 study period (Table A1). This period was used for the analyses based
on the longest period available for climate data, observed streamflow, and matching
LULC map. The available precipitation data comprise the PRISM dataset (Gilliland,25

2003) and a network of eight rain gauges maintained by the USGS (USGS, 2014).
For our analyses, we use the PRISM data and two additional rasters interpolated from
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the USGS point data (rain gauges) via spline and inverse-distance weighting (IDW).
The three input rasters (hereafter referred to as PRISM, IDW, and Spline) were used
separately to compute the average precipitation over each of the ten subcatchments
and assess the error introduced by the input data selection. The variability in average
annual precipitation among the PRISM, IDW, and spline rasters (averaging 1118, 975,5

and 966 mm, respectively, Table 1) represents the uncertainty that may arise when
precipitation data are limited, a situation that is common in many places around the
world (McGlynn et al., 2012).

Potential evapotranspiration is represented by reference evapotranspiration ET0
times a crop factor Kc (Tallis et al., 2013). Reference evapotranspiration (ET0) was10

obtained from three sources: FAO data, representing a long-term average from 1961
to 1990 (FAO, 2000), MODIS data (Mu et al., 2012), and interpolation (IDW) from
a network of thirteen weather stations maintained by the Climate Office of North
Carolina (NCSU, 2014). These three sources indicate average annual PET for the
Cape Fear region to be 1240 (FAO), 1160 (MODIS), and 1310 mm (NCSU). These15

climate data indicate an aridity index (P/PET) of approximately 0.9 for the Cape Fear
watersheds. A summary of InVEST inputs is given in Appendix Tables A1 and A2.

Streamflow observations were obtained from the USGS monitoring network (USGS,
2014). A total of ten stations with a minimum of ten years of data were used for the
analyses (Fig. 2 and Table 2). Subcatchments draining to each of these points were20

delineated based on the 30 m DEM.
Groundwater withdrawal data were obtained from governmental agencies (NC

Department of Environment and Natural Resources, 2014). Due to the lack of spatially
explicit information for water withdrawals (reported by county, which do not follow the
subcatchment boundaries), and on the magnitude of return flow, we represented their25

effect as homogeneous over the entire catchment. We think this decision has a limited
effect on model testing since the value of water withdrawals is small compared to yields
(see Sect. 3). In addition, we explicitly accounted for this uncertainty by examining
the effect of a 50 % error on the water withdrawal – a magnitude consistent with the
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variance among the county withdrawals. The average withdrawal rate, 39 mm year−1,
was subtracted from the predicted water yields for comparison with observations.

2.3 Sensitivity to Z and Kc

Step one in our assessment of the InVEST model was a local sensitivity analysis of
water yield to the Z parameter and the crop coefficient, Kc, for forest – the dominant5

LU class. The sensitivity of the model to Z can also be interpreted as the sensitivity
to AWC, when the raster values are varied homogeneously over the catchment, since
these parameters play a similar role in the model structure (Eq. 3).

As noted above, large uncertainties surround the selection of the Z parameter
(Tallis et al., 2014). For what we term the “baseline” case, we set Z equal to one-10

fifth the number of rain days per year (Z = N/5). Based on historic precipitation data
(SERCC, 2014), the average number of rain days per year is approximately 110, giving
a value of Z of 22. We used this value as a baseline for all subcatchments, and
allowed the parameter to vary between 1 and 30 for the sensitivity analyses. This
range was estimated from Eq. (3) used with extreme values of P and AWC found in15

our catchments, and extreme values of ω (2.1 and 3.75) found in the study by Zhang
et al. (2004).

Forest was the dominant LULC in all basins, with its cover ranging from 43 to
72 % of subcatchments. We therefore decided to use the crop factor Kc-forest for the
sensitivity analyses, and a baseline value of 1 for Kc forest was obtained from the20

FAO 56 guidelines (Allen et al., 1998). Uncertainties on this value are large since it
remains difficult to provide accurate estimates of the actual evapotranspiration of forest
(McMahon et al., 2013). We set the upper bound to 1.1, because values greater than
this are unlikely (McMahon et al., 2013), and set the lower bound to 0.7.

For the two parameters, we performed sensitivity analyses with the ranges defined25

above. The results are presented as a change in predicted water yield compared
to the baseline run, thus assessing absolute sensitivity. Precipitation and reference
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evapotranspiration used for these runs were from the PRISM and the FAO datasets,
respectively (see Sects. 2.5 and 4 for insights into the error introduced by climate data).

2.4 Comparison of distributed and lumped application of the water-balance
model

Although the InVEST annual water yield model is based on the well-studied Budyko5

framework, it departs from its classical application by applying the partitioning model at
the pixel scale. To our knowledge, the effect of the pixel-by-pixel calculation performed
by InVEST has not been previously studied. Therefore, we compared the model
predictions to those obtained by applying the Zhang model at the catchment scale,
therefore applying the Budyko framework in a more classical way. Application of such10

a lumped model requires a value of ω, which we derived from Eq. (3) with average
values of P , PET, and AWC, and with Z set to the baseline value of 22, as would
be done in a typical ungauged application. We thus obtained, for each subcatchment,
an estimate of areal AET and water yields for the vegetated areas. AET for urban
areas and wetlands was calculated separately, following the same method as InVEST,15

and total water yield was calculated as the area-weighted average of yield from the
vegetated and urban areas.

2.5 Performance of the InVEST model

To quantify the accuracy and precision associated with the InVEST water-yield model,
we assessed model performance by comparison with observed data for each of the20

ten subwatersheds in the Cape Fear area. We measured performance with the model
bias, i.e. the relative difference between predicted and observed yields, and also with
the subcatchment ranking by water yields. The ability of the model to predict ranking is
important for applications where prioritization of areas of low and high yields is needed
(Guswa et al., 2014).25
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2.5.1 Uncalibrated model

We first examined the performance of the model when Z was determined without
calibration. We considered calculating Z both from the number of rain days and from
a global value of ω, to evaluate the appropriateness of these recommended methods.
In addition to assessing overall model performance, we also assessed the correlation5

between model performance and the proportion of forest in the catchment. These
analyses aimed to identify a potential bias that may be corrected by modifying the
LULC-specific crop factor Kc.

2.5.2 Calibrated model

To separate the effects of error associated with model structure from error attributed to10

parameter estimation, we also determined the value of Z via calibration. We calibrated
to individual watersheds, identifying for each subcatchment the Z value that resulted in
a zero error in the water yield. We examined the similarity of Z values across the ten
basins, allowing us to assess the robustness of the model structure since we expect
Z to depend on larger-scale climate and geology and not on local-scale land-use. We15

also considered the performance of the model with a single value of Z applied to all
subcatchments, determined by minimizing the average bias for all basins. This allowed
us to assess the uncertainty in prediction of water yield due to model structure, i.e.,
the inherent uncertainty to applying Eqs. (2) and (3) to different basins even when the
parameter, Z , is chosen by best fit.20

2.5.3 Comparison with errors in climate inputs

To provide context for the uncertainty in the predictions of water yield from the InVEST
model, we compared the prediction error to the uncertainty in water yield that arises
from uncertainty in climate (i.e., variability in the rasters of P and ET0). Uncertainties
in climatic data and their impact on rainfall–runoff models are commonly cited in the25
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literature (McGlynn et al., 2012; McMahon et al., 2013). To be an effective decision-
support tool, errors attributed to model structure and parameter selection should be on
par with or less than the irreducible error associated with uncertainty in the inputs.

As illustrated in Table 1, the mean precipitation differed significantly across
subcatchments: the differences between the PRISM and USGS datasets, with5

the spline or IDW interpolation methods, respectively, were −14 and −13 %. The
difference was more spatially heterogeneous with the spline method, with some
subcatchments receiving less precipitation relative to the baseline (PRISM dataset) and
others receiving more. The reference evapotranspiration data also showed significant
differences across sources, although the FAO and Climate Office sources showed10

good agreement. The MODIS values were 22 % higher on average than those from
the other two sources. Differences between the Climate Office and FAO data were
spatially variable, being positive for some subcatchments and negative for others.

To assess the uncertainty in water yield due to variability in climate inputs
(precipitation and reference evapotranspiration), we examined the sensitivity of the15

baseline model results to spatially homogeneous increases and decreases in climate
forcing. We considered climate inputs that are 10 % greater and 10 % less than the
baseline.

3 Results

3.1 Sensitivity of water yield to climate, Z, and Kc20

Water yield predictions are very sensitive to climate inputs. The sensitivity is higher for
precipitation than ET0. A 10 % increase in precipitation resulted in a 30 % increase in
yield, while the same increase in ET0 resulted in a 15 % decrease in yield.

In contrast to the climate variables, water yield is less sensitive to values of Z : for
example, a change in Z from the baseline value of 22 to a value of 10 results in an25

increase in yield of approximately 27 % (Fig. 3). However, given the large uncertainties
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in the Z parameter, potential errors in water yield can be large: for example, the water
yield is 155 % higher when Z is at its minimum value, relative to the baseline case
with Z = 22. The sensitivity to Z is catchment-specific, as expected, since its effect on
yield is modulated by AWC and P , both of which are spatially variable. In addition, the
relative sensitivity of yield to Z decreased with increasing values of Z and increased5

with increasing values of the aridity index (PET/P , results not shown).
The model was found to be more sensitive to Kc (Fig. 3) with a 30 % change in Kc

resulting in a 41 % change in the water yield. However, given the expected range of Kc
values, the effect of parameter uncertainty on the yield prediction is lower than for Z .

3.2 Comparison of spatially explicit and lumped models10

Across the ten subcatchments, the water yields predicted by the spatially explicit
InVEST model were on average 10 % lower than the outputs from the lumped Zhang
model (Table 2). For eight of the ten catchments, the spatially explicit model predicted
lower yields than the lumped model, and differences ranged from from −24 to 14 %.
The two catchments for which the lumped model predicted lower yield than the InVEST15

model were the Morgan Creek and Cane Creek catchments, which have the highest
proportions of forest and the lowest proportions of urbanized area across the ten
catchments (Table 2).

3.3 Performance of the InVEST model

3.3.1 Uncalibrated model20

Figure 4a presents predictions of water yield from the invest model when the Z-
parameter is determined from the number of rain days (Z = 22). The performance of
the model for the baseline run was fair, with the bias between predicted and observed
values averaging −16 % for all subcatchments. This bias ranged from −53 to −1 %,
implying that this choice of Z leads to a systematic underestimation of water yield. With25
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the exception of one catchment, the biases ranged from −25 to −1 %. The outlier with
an error of −53 %, Rockfish catchment, is relatively small (237 km2), and the observed
water yield is also an outlier, being the highest in the dataset (367 mm). This area
is also characterized by sandy soils; the plant available water content averages 0.11,
compared to values between 0.17 and 0.20 for the other subcatchments. This suggests5

that the catchment may exhibit a unique behavior, which we will highlight in the following
analyses. Across all basins, predicted yields range from 163–322 mm year−1 vs. an
observed range of 177–368 mm year−1.

Figure 4b presents the ranking of catchments in terms of their observed and
predicted yields. Discarding the outlier catchment, the figure indicates that the10

model accurately predicts the high and low ranking catchments, while there is some
dispersion in ranks for the five mid-range yields, which vary from 236 to 289 mm year−1.

For the second case, when Z is determined from published values of ω, the model
performance was not satisfying. The Z value found for all subcatchments averaged 6,
which results in a large model bias (averaging 68 %).15

3.3.2 Calibrated model

When Z is determined through calibration for each subcatchment, values of the
parameter range from 6 to 20. The calibrated value of 6 was obtained for the Rockfish
catchment; discarding that outlier catchment, values range from 10 to 20, averaging
14.5. This variability translates into relatively small changes in water yield – the average20

difference among the basins is 27 %. The single Z value obtained by minimizing the
average subcatchment bias (Z = 14) is similar to these individual Z values. With this
calibrated value, the error in yield for all subcatchments ranges from −38 to 14 % with
a median value of −3 %. Predicted yields range from 183 to 336 mm year−1 vs. an
observed range from 177 to 368 mm year−1. Figure 4a presents model predictions of25

water yield vs. the observed values across the ten catchments. Open circles represent
results from the calibrated InVEST model, while black bars represent the uncertainty
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in yield due to a 50 % uncertainty in water wtihdrawals. Gray bars represent the
uncertainty in predicted yield due to a 10 % uncertainty in precipitation.

Model bias is not correlated with forest cover (R2 = 0.01), nor with any other LULC
(Table 1). The absence of systematic bias suggests that Kc values are in a realistic
range, with no significant error due to LULC parameter selection. No significant bias5

was detected with regard to catchment size, suggesting that this characteristic did not
systematically influence the model predictions either.

4 Discussion

4.1 Sensitivity to Z and Kc

Variability in the Z parameter, which is linearly related to ω, results in a shift of the10

Zhang curve, which affects water yield predictions (Fig. 1). Our results suggest that the
sensitivity of water yield to Z is low compared to the climate inputs, and decreases
for larger values of Z (Fig. 3). This is consistent with the Zhang model for which
the sensitivity to ω, decreases with increasing values of ω (Fig. 1). Due to this low
sensitivity, small errors in estimating Z are likely to have limited impact on the reliability15

of water yield predictions.
The sensitivity to Z also provides a sense of the sensitivity to AWC, which is

a function of the local ecohydrological properties: plant available water content, root
depth and soil depth (cf. Tallis et al., 2014 for details). Examination of Eq. (3)
suggests that a relative change in Z has the same effect as a relative change in20

these ecohydrological parameters: a 50 % error in these parameters, if assumed
homogeneous over the catchment, will have the same response as a 50 % error in Z .
Given the typical confidence interval for these measurable parameters, the uncertainty
on these parameters will have a smaller effect on model outputs than the uncertainty
in Z .25
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When analyzing the model sensitivity to Kc, two things are to be considered. First,
the Kc value affects only the portion of the landscape covered with forest, and this
reduces its effect. Because total water yield is the sum of the yields from the different
parts of the landscape, parameters affecting only a portion of the landscape will have
a smaller effect. Second, it is worth noting that the Kc coefficient directly affects PET5

for a given LULC, since the latter is the product of Kc by ET0. Examining the sensitivity
of the model to Kc is therefore equivalent to a displacement along the Zhang curve,
rather than a shift of this curve (Fig. 1).

The results of the sensitivity analyses indicate that embedded in the Zhang model
is the concept that the dominant effects of land-use and land-cover change on water10

yield will be via the effects on Kc and PET rather than through changes to root depth
and plant-available water content.

4.2 Comparison of spatially explicit and lumped models

Comparison of the model predictions with the classical lumped model application
suggests three insights. First, it provides a sense of the effect of the pixel-by-pixel15

application of the Budyko theory, which has not received much attention in the
literature. Because of its non-linear nature, the average response of Eq. (2) applied
across the landscape in a spatially explicit way is not equivalent to the response of the
function applied to the entire watershed, characterized by average parameters. Our
results suggest that this discretization effect is not large for the Cape Fear watersheds,20

with the difference between the lumped and explicit models ranging from −24 to +14 %.
This range is consistent with the typical errors expected from the application of simple
empirical models. This point can be illustrated by the performance of the lumped model
when compared with the observations: bias ranges from −36 to 29 %. It is worth noting
that the larger, positive biases (> 22 %) were obtained for the two subcatchments that25

had > 25 % urban cover, and the three basins with the least urban cover (Cane Creek,
Rockfish, and Morgan Creek) had the largest underestimates of yield. These results
suggest that the contribution from urban areas was overestimated by the simple model.
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Second, the good agreement between the InVEST model and the lumped model
allows to draw on the large body of work investigating the performance of the latter
model. For example, Zhou et al. (2012) report a bias of less than 20 % in a long-
term study of 150 large basins worldwide; similarly, Zhang et al. (2004) report
a mean absolute error of < 60 mm in their study of over 470 catchments worldwide,5

corresponding to a bias < 10 % for the majority of the catchments. Other local examples
may be drawn by users to understand how the Budyko theory may apply locally (e.g.
Yang et al., 2007 in China). Overall, there is a large ongoing effort to improve the
parameterization and predictive use of the Budyko framework (Donohue et al., 2012;
Liang and Liu, 2014; Xu et al., 2013). Future progress may therefore be used to refine10

the InVEST model interpretation in different geographic contexts. We note, however,
that the agreement between the lumped model and the catchment model is context
specific. As illustrated in Table 2, the differences between the lumped model and the
InVEST model will vary between catchments, such that extrapolation of the results from
such studies will need to be done cautiously.15

The final point is based on the observation that yields predicted by the spatially
explicit model were consistently less than those predicted by the lumped model. This
difference could be due to differences in mean parameter values or due to the non-
linearity in Eq. (2). Looking at Fig. 1, the concave nature of the Zhang curve indicates
that the average response over a range of climates will lead to lower evapotranspiration20

and higher yields than if the equation were applied to the mean climate. Similarly,
application over a range of values of ω would also lead to higher yield than what is
predicted using the mean yield (Fig. 1). In this case, the lower yields predicted by the
explicit model are due to differences in the mean values of ω between the lumped
and explicit models. This indicates that the empirical expression for Z , developed for25

a lumped application (e.g., Donohue et al., 2012), may give values of Z (and, therefore,
ω) that are too large when used in a spatially explicit model. Use of a smaller value of
Z in the spatially explicit model would increase yield, although further studies would be
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necessary to gain insights into the extrapolation of the Z parameter to spatially explicit
models like InVEST.

4.3 Model performance in gauged and ungauged basins

4.3.1 Gauged catchments

Our results indicate a fair performance of the calibrated model for multiple catchments5

ranging in size and LULC. The bias ranged from −38 to 14 % for all subcatchments,
and from −14 to 14 % when discarding the Rockfish catchment. This narrow range
suggests that the calibrated model was able to explain the variability in observed water
yields. While it is possible that such variability is explained by climate more than LULC,
this hypothesis is unlikely in Cape Fear since on average they varied by less than 3 %10

between subcatchments (raster average for both P and ET0, Table 2).
Further consideration of the Z values obtained by individual calibrations provides

insights into the interpretation of this parameter. With the exception of the Rockfish
catchment, a single value was able characterize the nine other subcatchments. This
suggests that the parameter captures the topography and climate of the area, as15

intended by the model. The calibrated value of Z for the Rockfish catchment was much
lower, producing a higher yield. This difference could be due to the inadequacy of
Eq. (3) to relate ω to soil characteristics (since the soils in the Rockfish catchment
are particularly sandy). It could also be attributed to errors in the treatment of water
withdrawals and return flows, especially since the entire subcatchment lies within Hoke20

County, which has minimal water withdrawals.
Despite the uncertainties around the outlier, the multi-catchment analyses allowed

us to assess the model performance in representing LULC change. Use of the model
for evaluation of LULC change is crucial in ecosystem service assessments, where
scenarios analyses of LULC development are common (Guswa et al., 2014). Validating25

the use of models in such contexts is extremely challenging since it is rare for modelers
to have sufficient pre- and post-LULC change data (Hrachowitz et al., 2013). In our
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study, the length of the precipitation and streamflow data did not allow conducting
such temporal analyses. Regional analyses where space is substituted for time thus
represent a powerful way to assess the ability of the model to capture differences in
LULC configuration.

4.3.2 Ungauged catchments5

Another important lesson from the analyses is that the calibrated Z value is relatively
close to the baseline value, which was derived independently from the average annual
number of rain events. Based on Fig. 3, using one value or the other would result
in a difference in yield of approximately 10 %. This error is small compared to other
model uncertainties, suggesting that this method for determining Z is robust. The10

underprediction of yield for ungauged catchments could be explained by errors in the
precipitation raster, the Z parameter, and the treatment of water withdrawals. Based
on Eq. (2), the negative bias implies the underestimation of the precipitation data or
overestimation of the Z coefficient. As already noted, errors in precipitation data are
difficult to characterize. However, precipitation was more likely underestimated in this15

study since it did not include snowfall.
Conversely, the method relying on a constant ω value was not found satisfying for

this case study, since it resulted in large overestimation of the water yields. Using ω = 4,
the Z value found for individual subcatchments ranged from 4 to 8, averaging 6, a value
that results in a large model bias (averaging 68 %).20

With regard to relative yield values, the model was able to predict subcatchment
ranks fairly accurately (Fig. 4b), which means that priority areas would be correctly
identified. The uncertainties in ranking for medium yield catchments (ranking from 3
to 6) could be partly explained by their similarity (observed yields range from 236 to
278 mm) and the uncertainty in the water abstraction, as suggested by the overlapping25

error bars in Fig. 4a. Interestingly, although these results were obtained with the
calibrated value of Z , they are only slightly sensitive to the value of Z , since the ranking
of subcatchments is largely maintained when the value of Z changes. The ranking of
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subcatchments based on the baseline run, for example, was identical to the one with
Z = 14.

4.4 Practical implications

In this final section, we discuss the results with a focus on practical implications for
model users.5

Our analyses suggest that the uncertainty introduced by variability in the precipitation
inputs is high, comparable or higher than the uncertainty introduced by the parameter
Z and the use of the lumped model theory on a pixel-by-pixel basis. This suggests
that confidence intervals for climate data deserve particular attention (especially if
interpolating local data from weather stations). The comparison of three climate input10

data sources suggested that large errors may occur when using point data or datasets
obtained with different modeling assumptions. These results confirm a wide body of
research that highlight the importance of precipitation inputs for rainfall runoff models
(McGlynn et al., 2012; Zhou et al., 2012) and in particular for the InVEST model
(Boithias et al., 2014; Sánchez-Canales et al., 2012). Although it was outside the scope15

of this study to investigate which climate datasets are less prone to errors, our results
also draw attention to spatially heterogeneous errors. If model users are interested
in the relative ranking of subcatchments, the spatial distribution of errors should be
specifically investigated (e.g. probability of a systematic bias in mountainous areas).

The model is not very sensitive to uncertainty in Z over a modest range (e.g., 14–20

22). This is consistent with the conclusions from Sánchez-Canales et al. (2012), who
report a low sensitivity to Z in a Mediterranean watershed, for which Z varied between
7 and 9. Since the viable range of Z is quite wide, however, it is possible that large
uncertainties in that parameter will translate to significant uncertainty in yield (Fig. 3).
Our analyses provided further insights into the methods for Z selection and highlighted25

that the sensitivity of the model to Z decreased with increasing values of Z . Based on
the examination of Eq. (2), this property will apply generally. Therefore, in temperate
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climates where values of Z are high (based on the interpretation of Z as the number of
annual rain events), the model outputs are likely to be less sensitive to this parameter.

Our study also presented a method to detect a bias related to the LULC parameters,
when multiple observations are available in a catchment. Because Kc values are
LULC-specific, the correlation between model performance and Kc values can be5

used to identify a possible error in the parameter and rectify the values accordingly.
No bias was found in this study, bringing confidence in the ability of the model to
capture the differences in LULC. We note that these correlation analyses rely on
nested subcatchments that are not independent from each other, which decreases the
significance of the relationship: five subcatchments are independent, while the other10

five partially overlap. However, proportions of forest cover varied widely between all
subcatchments (from 43 to 72 %), which justifies our interpretation of the analyses.

We conclude this section with a perspective on the model performance assessment,
highlighting key limitations in the calibration/testing exercise. First, we note that some
water transfers are missing in the model, including irrigation and water abstraction.15

The model represents agriculture in the same way that it does natural vegetation, and
irrigation is not included explicitly. Second, in the Cape Fear catchment, the magnitudes
of the water withdrawals are small but this aspect of the modeling may be improved
in future applications. In particular, distinction between uses of groundwater (crop
irrigation or drinking water) are necessary to account for the fate of water extraction:20

evapotranspiration in the case of irrigation water, or return flow to the river in the case
of drinking water (e.g. Terrado et al., 2014). Additionally, performance was evaluated
at the catchment scale. A potential benefit of a spatially explicit model, however,
is the ability to predict patterns of water yield within a basin. To properly evaluate
that capability, further work should focus on comparing the InVEST model to more25

sophisticated fully distributed models.
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5 Conclusion

Our study aimed to assess the performance of the InVEST annual water yield,
a tool that is gaining interest in the ecosystem services community. While such
simple models with low requirements for data and level of expertise are needed for
practical applications, greater attention should be paid to characterizing the modeling5

uncertainties. Our assessment of the potential input errors, sensitivity analyses and
comparison with observations in the Cape Fear catchment add to this body of work.
Key results of the analyses are as follow:

– In the Cape Fear catchment, the InVEST model was most sensitive to uncertainty
in the precipitation forcing.10

– Errors in climate input data may be significant and non-spatially homogeneous,
resulting in uncertainties in the assessment of zones of high and low water yields.

– The study supports the recommendations for setting the Z parameter based on
the number of rain events, or via calibration with available observed data.

– Based on the average bias and the explained variance in yield among the15

subcatchments, the model performance was fair to high, suggesting that the
effects of land-use and land-cover are adequately captured by the model.

– The errors potentially introduced by a pixel-level application of the Budyko theory
will depend on catchment configuration; in Cape Fear, they remained small,
comparable to the climate and structural errors of the empirical model.20

– Water abstractions and irrigation processes that are not represented in
simple models may confuse the calibration exercise, especially in data scarce
environments where the ecosystem services approach is gaining momentum.

While the sensitivity analyses results are inherently local, the methods outlined in this
study provide a template that can be used in most InVEST model applications. The25
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analyses do not require hydrologic expertise and are facilitated by the model batch-
processing capabilities. Since rigorous uncertainty analyses are currently not the norm
in the ecosystem services community, such simple guidance is essential to help users
interpret models correctly and conduct more robust assessment of the water-related
ecosystem services.5

Acknowledgements. We thank Rebecca Benner and Margaret Fields, from the Nature
Conservancy, and Chris Cook for their support and help with data pre-processing.

References

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – guidelines
for computing crop water requirements, FAO Irrigation and Drainage paper 56, Rome, Italy,10

1998.
Bagstad, K. J., Semmens, D. J., Waage, S., and Winthrop, R.: A comparative assessment

of decision-support tools for ecosystem services quantification and valuation, Ecosystem
Services, 5, 27–39, 2013.

Bai, Y., Zheng, H., Ouyang, Z., Zhuang, C., and Jiang, B.: Modeling hydrological ecosystem15

services and tradeoffs: a case study in Baiyangdian watershed, China, Environmental Earth
Sciences, 70, 709–718, 2012.

Boithias, L., Acuña, V., Vergoñós, L., Ziv, G., Marcé, R., and Sabater, S.: Assessment of
the water supply:demand ratios in a Mediterranean Basin under different global change
scenarios and mitigation alternatives, Sci. Total Environ., 470–471, 567–577, 2014.20

Donohue, R. J., Roderick, M. L., and McVicar, T. R.: Roots, storms and soil pores?:
incorporating key ecohydrological processes into Budyko’s hydrological model, J. Hydrol.,
436–437, 35–50, 2012.

FAO: Global Agro-Ecological Zones, FAO Land and Water Digital Media Series No. 11, Rome,
Italy, 2000.25

Gilliland, B. K.: PRISM Precipitation Data, Technical Report 04-013. Idaho Water Resources
Research Institute, University of Idaho, USA, 2003.

11024

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11001/2014/hessd-11-11001-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11001/2014/hessd-11-11001-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
11, 11001–11036, 2014

Uncertainty analysis
of a spatially-explicit
annual water-balance

model

P. Hamel and A. J. Guswa

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Guswa, A., Brauman, K. A., Brown, C., Hamel, P., Keeler, B. L., and Sayre, S. S.: Ecosystem
services: challenges and opportunities for hydrologic modeling to support decision making,
Water Resour. Res., 50, 4535–4544, 2014.

Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W.,
Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A.,5

Gupta, H. V., Hughes, D. A., Hut, R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A.,
Uhlenbrook, S., Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.:
A decade of predictions in ungauged basins (PUB) – a review, Hydrolog. Sci. J., 58, 1198–
1255, 2013.

Liang, L. and Liu, Q.: Streamflow sensitivity analysis to climate change for a large water-limited10

basin, Hydrol. Process., 28, 1767–1774, 2014.
Martin-Ortega, J., Ojea, E., and Roux, C.: Payments for water ecosystem services in Latin

America: a literature review and conceptual model, Ecosystem Services, 6, 122–132, 2013.
McGlynn, B. L., Blöschl, G., Borga, M., Bormann, H., Hurkmans, R., Komma, J., Nandagiri, L.,

Uijlenhoet, R., and Wagener, T.: A data acquisition framework for prediction of runoff in15

ungauged basins, in: Predictions in Ungauged Basins, IAHS, 2012.
McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., and McVicar, T. R.: Estimating

actual, potential, reference crop and pan evaporation using standard meteorological data:
a pragmatic synthesis, Hydrol. Earth Syst. Sci., 17, 1331–1363, doi:10.5194/hess-17-1331-
2013, 2013.20

Mu, Q., Zhao, M., and Running, S. W.: Brief Introduction to MODIS Evapotranspiration Data
Set (MOD16), The University of Montana, Missoula, MT, available at: ftp://ftp.ntsg.umt.edu/
pub/MODIS/Mirror/MOD16/MOD16_global_evapotranspiration_description.pdf, last access:
1 August 2014, 2012.

NASS: National Agricultural Statistics Service – Cropland Data Layers 2012, available at: http:25

//www.nass.usda.gov/research/Cropland/SARS1a.htm (last access: 1 August 2013), 2013.
NC Department of Environment and Natural Resources: Reported Daily Water Withdrawals,

available at: http://www.ncwater.org/Water_Withdrawals/ResultsTabJS.php?wsrc=gw&fip=
1&tab=data&byRegionType=basin&basinid=2 (last access: 1 February 2014), 2014.

NCSU: NC Climate Office, available at: www.nc-climate.ncsu.edu/ (last access: 1 February30

2014), 2014.
Nelson, E., Sander, H., Hawthorne, P., Conte, M., Ennaanay, D., Wolny, S., Manson, S.,

and Polasky, S.: Projecting global land-use change and its effect on ecosystem

11025

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11001/2014/hessd-11-11001-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11001/2014/hessd-11-11001-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/hess-17-1331-2013
http://dx.doi.org/10.5194/hess-17-1331-2013
http://dx.doi.org/10.5194/hess-17-1331-2013
ftp://ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD16/MOD16_global_evapotranspiration_description.pdf
ftp://ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD16/MOD16_global_evapotranspiration_description.pdf
ftp://ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD16/MOD16_global_evapotranspiration_description.pdf
http://www.nass.usda.gov/research/Cropland/SARS1a.htm
http://www.nass.usda.gov/research/Cropland/SARS1a.htm
http://www.nass.usda.gov/research/Cropland/SARS1a.htm
http://www.ncwater.org/Water_Withdrawals/ResultsTabJS.php?wsrc=gw&fip=1&tab=data&byRegionType=basin&basinid=2
http://www.ncwater.org/Water_Withdrawals/ResultsTabJS.php?wsrc=gw&fip=1&tab=data&byRegionType=basin&basinid=2
http://www.ncwater.org/Water_Withdrawals/ResultsTabJS.php?wsrc=gw&fip=1&tab=data&byRegionType=basin&basinid=2
www.nc-climate.ncsu.edu/


HESSD
11, 11001–11036, 2014

Uncertainty analysis
of a spatially-explicit
annual water-balance

model

P. Hamel and A. J. Guswa

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

service provision and biodiversity with simple models, PLoS ONE, 5, e14327,
doi:10.1371/journal.pone.0014327, 2010.

Sánchez-Canales, M., López Benito, A., Passuello, A., Terrado, M., Ziv, G., Acuña, V.,
Schuhmacher, M., and Elorza, F. J.: Sensitivity analysis of ecosystem service valuation in
a Mediterranean watershed, Sci. Total Environ., 440, 140–153, 2012.5

SERCC: Number of Days of Precipitation Equal to or Above 0.01 Inches in Selected Cities in
the Southeast, Southeast Reg. Clim. Cent., available at: https://www.sercc.com/climateinfo/
historical/meanprecip.html (last access: 1 March 2014), 2014.

Su, C. and Fu, B.: Evolution of ecosystem services in the Chinese Loess Plateau under climatic
and land use changes, Global Planet. Change, 101, 119–128, 2013.10

Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Sharp, R., Nelson, E., Ennaanay, D.,
Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J.,
Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G.,
Kim, C. K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R.,
Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M., Mandle, L., Hamel, P., and Chaplin-15

Kramer, R.: InVEST 3.0 User’s Guide, available at: http://ncp-dev.stanford.edu/~dataportal/
invest-releases/documentation/current_release/ (last access: 1 August 2014), 2014.

Terrado, M., Acuña, V., Ennaanay, D., Tallis, H., and Sabater, S.: Impact of climate extremes on
hydrological ecosystem services in a heavily humanized Mediterranean Basin, Ecol. Indic.,
37, 199–209, 2014.20

USGS: Digital Elevation Model, The National Map, available at: http://nationalmap.gov/viewer.
html (last access: 1 August 2013), 2013a.

USGS: STATSGO and SSURGO datasets, available at: http://water.usgs.gov/GIS/metadata/
usgswrd/XML/ussoils.xml (last access: 1 October 2013), 2013b.

USGS: USGS Real time water data for North Carolina, available at: http://nc.water.usgs.gov/25

realtime/real_time_cape_fear.html (last access: 1 February 2014), 2014.
Xu, X., Liu, W., Scanlon, B. R., Zhang, L., and Pan, M.: Local and global factors controlling

water-energy balances within the Budyko framework, Geophys. Res. Lett., 40, 6123–6129,
2013.

Yang, D., Sun, F., Liu, Z., Cong, Z., Ni, G., and Lei, Z.: Analyzing spatial and temporal variability30

of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis,
Water Resour. Res., 43, W04426, doi:10.1029/2006WR005224, 2007.

11026

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11001/2014/hessd-11-11001-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11001/2014/hessd-11-11001-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1371/journal.pone.0014327
https://www.sercc.com/climateinfo/historical/meanprecip.html
https://www.sercc.com/climateinfo/historical/meanprecip.html
https://www.sercc.com/climateinfo/historical/meanprecip.html
http://ncp-dev.stanford.edu/~dataportal/invest-releases/documentation/current_release/
http://ncp-dev.stanford.edu/~dataportal/invest-releases/documentation/current_release/
http://ncp-dev.stanford.edu/~dataportal/invest-releases/documentation/current_release/
http://nationalmap.gov/viewer.html
http://nationalmap.gov/viewer.html
http://nationalmap.gov/viewer.html
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ussoils.xml
http://nc.water.usgs.gov/realtime/real_time_cape_fear.html
http://nc.water.usgs.gov/realtime/real_time_cape_fear.html
http://nc.water.usgs.gov/realtime/real_time_cape_fear.html
http://dx.doi.org/10.1029/2006WR005224


HESSD
11, 11001–11036, 2014

Uncertainty analysis
of a spatially-explicit
annual water-balance

model

P. Hamel and A. J. Guswa

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Zhang, L., Dawes, W. R., and Walker, G. R.: Response of mean annual evapotranspiration to
vegetation changes at catchment scale, Water Resour. Res., 37, 701–708, 2001.

Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and Briggs, P. R.: A rational
function approach for estimating mean annual evapotranspiration, Water Resour. Res., 40,
W02502, doi:10.1029/2003WR002710, 2004.5

Zhou, X., Zhang, Y., Wang, Y., Zhang, H., Vaze, J., Zhang, L., Yang, Y., and Zhou, Y.:
Benchmarking global land surface models against the observed mean annual runoff from
150 large basins, J. Hydrol., 470–471, 269–279, 2012.

11027

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/11001/2014/hessd-11-11001-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/11001/2014/hessd-11-11001-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2003WR002710


HESSD
11, 11001–11036, 2014

Uncertainty analysis
of a spatially-explicit
annual water-balance

model

P. Hamel and A. J. Guswa

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Precipitation and evapotranspiration in Cape Fear according to different data sources.
Mean and standard deviation values are obtained from the 10 subcatchments. The relative
difference between baseline data (i.e. PRISM and FAO sources, respectively, for P and ET0),
and the alternative data sources, is given as the mean and the range for the ten subcatchments.

Annual P (mm) Annual ET0 (mm)

PRISM Spline IDW FAO ClimOffice MODIS

Mean (± st. deviation) 1118±11 966±81 975±38 1200±18 1189±56 1459±19
Relative difference from baseline −14 % −13 % −1 % +22 %
data (mean difference and range) [−23; 2] % [−17; −4] % [−8; 5] % [14; 24] %
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Table 2. Summary of mean flow, precipitation, reference evapotranspiration, and land use
characteristics of the ten study subcatchments. LULC classes shrubland, swine farm, open
water and barren represetented ≤ 2 % and are not reported here. Predicted mean flow values
are results from the InVEST model with Z set to 14. P and ET0 are precipitation and reference
evapotranspiration, respectively.
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ID Name Area Observed Predicted P ET0

(km2) flow (mm) flow (mm) (mm) (mm)

2105769 Cape Fear at Kelly 13 567 278 239 1112 1212 49 13 9 6 6 13
2105500 Cape Fear at Tarheel 12 535 265 249 1109 1207 51 13 9 6 3 14
2102500 Cape Fear at Lillington 8973 236 254 1110 1196 55 10 9 8 1 14
2104220 Rockfish at Raeford 237 368 226 1118 1240 62 18 1 0 7 8
2102000 DeepRiver at Moncure 3727 250 248 1113 1203 58 9 7 11 0 11
2097314 NewHope at Blands 197 357 336 1143 1199 49 5 2 2 3 39
2100500 DeepRiver at Ramseur 913 289 314 1112 1177 43 9 9 10 0 27
2096960 HawRiver at Bynum 3294 278 287 1110 1181 48 10 14 9 0 17
2097464 Morgan at WhiteCross 22 177 201 1133 1198 72 7 10 5 0 5
2096846 Cane at Orange 20 202 183 1123 1192 71 6 11 6 0 4
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Table 3. Bias between the water yields obtained from the InVEST model (baseline value Z =
22), the lumped Zhang model, and observed data. The average, minimum, and maximum bias
values for all the subcatchments are reported. Note that comparison with observations discards
the Rockfish subcatchment which was identified as an outlier (see text for details).

Average Min Max

InVEST/Lumped model −0.10 −0.24 0.14
InVEST/Observations −0.16 −0.53 −0.01
Lumped model/Observations 0.04 −0.36 0.29
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Table A1. Data sources and statistics for model inputs. Raster statistics are for the entire Cape
Fear catchment delineated in Fig. 2.

Data Type Value Source Range for
(Mean and range) sensitivity

analyses

Precipitation Raster 1180 mm
[1030; 1450] mm

PRISM∗

(Gilliland, 2003)
(USGS, 2014)

±20 %

Reference
evapotranspira-
tion

Raster 1240 mm
[1160; 1310] mm

FAO∗

MODIS
(Mu et al., 2012)
Climate Office (NCSU,
2014)

±10 %

DEM Raster 90 m
[0; 250] m

(USGS, 2013a) n.a.

LULC Raster Cf. Appendix (NASS, 2013) n.a.
Soil depth Raster 1710 mm

[0; 2110] mm
(USGS, 2013b) n.a.

PAWC Raster 0.18
[0.07; 0.52]

(USGS, 2013b) n.a.

Root depth Per LULC class See Table A1 (Allen et al., 1998) n.a.
Kc Per LULC class See Table A1 (Allen et al., 1998) [−30 %; +10 %]
Z Constant 22∗ (Tallis et al., 2014) [1; 30]

∗ Indicates the data source used for the baseline run (see Sect. 3.2).
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Table A2. Biophysical table used for the baseline InVEST model run, giving the root depth and
crop coefficient Kc for each Land use/Land cover (LULC) class (values from Allen et al., 1998).

LULC Root depth (mm) Kc

Ag-Corn 1500 0.75
Ag-other 1100 0.7
Grass 1100 0.9
Forest 5000 1
Wetland na 1.1
Urban na 0.4
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Figure 1. Zhang model (Eq. 1), shown for ω values of 2, 4, and 6. Grey lines represent the
energy and water limits. Arrows illustrate the effect of a change in the climate forcing (thick
arrows) and a change in the ω parameter, a function of Z , precipitation, and soil properties
(thin arrow, see Eq. 3 for details).
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Figure 2. Cape Fear catchment showing locations of the stream gauges and subwatersheds
used in the study. The Rockfish catchment, discussed in the text, is indicated by a R.
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Figure 3. Sensitivity of the water yield output to the Z coefficient and crop coefficient for forest
LULC (Kc). Changes are relative to the baseline run (where Z = 22 and Kc = 1). On the left
hand side plot, absolute Z values are plotted on the x axis to facilitate the discussion on the Z
coefficient. Each curve represents a subcatchment.
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Figure 4. (a) Comparison between modeled yields (corrected for water withdrawal) and
observed yields, both for the baseline run (Z = 22), and the calibrated run (Z = 14). Black error
bars represent the uncertainty on the value for water withdrawal, while grey bars represent
a 10 % error in the precipitation input. (b) Comparison of subcatchment ranks. The outlier
(Rockfish) subcatchment is noted with a R on each figure (see text for details).
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